Cu–P. Cinq distances allant de 1,94 à 2,01 Å. Moyenne: 1,97 Å. Nous n'avons pas trouvé d'autres exemples de liens $Cu^{2+}-P^{3-}$. Par contre la distance $Cu_{3}P$ (2,345 Å; Olafsson, 1972), LiCu₂P (2,35 Å; Schlenger & Jacobs, 1972) et Li₂CuP (2,32 Å; Schlenger, Jacobs & Juza, 1971), mais les entourages du cuivre et du phosphore ne sont pas comparables à ceux que l'on trouve dans la likasite.

P-H···O. Ces liaisons hydrogène ont comme longueur 2,63 Å pour P(H)···O(H), 2,85 Å pour P(H)···O(H₂) et 2,93 Å pour P(H)···O(NO₂). Nous n'avons pas trouvé d'autres exemples de ce type de liaison dans la littérature. Il est probable que ces liens P-H···O sont rendus possibles par l'accumulation des charges positives apportées par deux ou trois Cu²⁺ à proximité du phosphore et du côté opposé aux atomes d'hydrogène, ce qui expliquerait l'apparition simultanée de deux types rares de liaisons dans un même composé.

Notons encore quelques distances entre atomes non directement liés et qui ne sont donc pas reprises au Tableau 3. Cu(1)Cu(2) 2,88 et 2,95, Cu(1)Cu(3) 2,99 et 3,07, Cu(2)Cu(3) 3,36 et 3,38, Cu(3)Cu(3') 3,39 (deux fois), P(4)P(5) 2,94 et 2,97 Å.

En conclusion, étant donné les caractéristiques remarquables de cette structure, nous souhaitons que d'autres recherches physico-chimiques soient entreprises, notamment pour étudier les particularités des liaisons $P-H \cdots O$. Elles devraient débuter par l'obtention de likasite synthétique, le composé naturel n'ayant été trouvé jusqu'à présent qu'en quantité minime.

Nous remercions le Professeur M. Van Meerssche pour ses nombreux conseils, ainsi que le Dr M. Deliens qui nous a posé le problème et fourni l'échantillon. J.-P. Declercq remercie le Fonds National Belge de la Recherche Scientifique pour la mandat de Chargé de Recherches qui lui a été accordé.

Références

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & HUBER, C. P. (1966). World List of Crystallographic Computer Programs, 2^e éd., Appendice, p. 52. Utrecht: Oosthoek.
- BUSING, W. R. & LEVY, H. A. (1957). Acta Cryst. 10, 180-182.
- DELIENS, M. (1973). Bull. Soc. Fr. Minér. Crist. 78, 84-88.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A 27, 368–376.
- International Tables for X-ray Crystallography (1962). Vol. III, Table 3.3.1A. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
- OLAFSSON, O. (1972). Acta Chem. Scand. 26, 2777-2787.
- SCHLENGER, H. & JACOBS, H. (1972). Acta Cryst. B28, 327.
- SCHLENGER, H., JACOBS, H. & JUZA, R. (1971). Z. anorg. allgem. Chem. 385, 177-201.
- SCHOEP, A., BORCHERT, W. & KOHLER, K. (1955). Bull. Soc. Fr. Minér. Crist. 78, 84–88.

Acta Cryst. (1977). B33, 1427-1431

Structure Cristalline du Tripolyphosphate Mixte Zinc–Sodium Nonahydraté: Zn₂NaP₃O₁₀.9H₂O

PAR M. T. AVERBUCH-POUCHOT ET J. C. GUITEL

Laboratoire des Rayons X, CNRS, 166 X, Centre de Tri, 38042 Grenoble Cédex, France

(Reçu le 27 septembre 1976, accepté le 8 octobre 1976)

The crystalline characteristics of $Zn_2NaP_3O_{10}$.9H₂O are: a = 10.454 (5), b = 10.675 (5), c = 8.629 (4) Å; $\alpha = 101.14$ (2), $\beta = 109.85$ (2), $\gamma = 99.03$ (2)°; Z = 2, V = 862.4 Å³, space group P1. The crystal structure has been solved with 2862 independent reflexions. The final R value is 0.041 for all the data. The atomic arrangement of this salt is similar to the already described tripolyphosphate: $Zn_2Ag_{0.62}H_{0.38}P_3O_{10}.9H_2O$. Both of these structures are characterized by a three-dimensional network of channels containing the water molecules.

Introduction

Plusieurs auteurs (Schwarz, 1895; Stange, 1896; Huber, 1937; Bonneman-Bémia, 1941) ont signalé l'existence d'un tripolyphosphate mixte hydraté de zinc et de sodium et lui ont attribué la formule Zn_2 -NaP₃O₁₀.9,5H₂O. Dans les travaux plus récents, effectués par Quimby & McCune (1957), Corbridge & Tromans (1958) et de Wolff (ASTM: 7-83), le nombre de molécules d'eau est ramené à 9. L'étude cristallographique de ce composé s'est limitée à l'établissement de son diagramme de poudre effectué par les trois auteurs cités ci-dessus et à la détermination de ses paramètres de réseau par de Wolff (ASTM: 7-83).

La détermination de l'arrangement atomique de ce sel nous a paru intéressante pour deux raisons: d'une part cette étude s'inscrivait dans le cadre de l'étude systématique des tripolyphosphates que nous avons entreprise et d'autre part elle nous permettait de vérifier si l'identité de maille de ce sel avec le sel d'argent $Zn_2Ag_{0.62}H_{0.38}P_3O_{10}.9H_2O$, que nous venions d'étudier, cachait une identité structurale.

Préparation chimique

Ce sel s'obtient par addition d'une solution de 2 g de sulfate de zinc dans 500 cm³ d'eau à une solution de 2 g de tripolyphosphate de sodium dans 500 cm³ d'eau. En laissant la liqueur précédente durant 24 h à la température ambiante il y a apparition des cristaux du composé désiré: $Zn_2NaP_3O_{10}.9H_2O$.

Technique expérimentale et caractéristiques cristallines

Le cristal choisi était un prisme de forme quelconque qui

mesurait 0,14 mm dans sa plus grande dimensions. Les intensités de 2862 réflexions indépendantes ont été mesurées à l'aide d'un diffractomètre automatique Philips PW 1100.

La longueur d'onde utilisée était celle de l'argent monochromatisée par un cristal de graphite.

L'intervalle angulaire θ exploré était compris entre 4 et 24 degrés. Chaque réflexion était balayée à la vitesse de 0,02° s⁻¹ dans un domaine angulaire de 1°. Le fond continue a été mesuré durant 10 s à chaque extrémité de ce domaine d'intégration qui était exploré en balayage ω . Aucune variation significative des trois réflexions de référence (433, 433, 271) n'a été remarquée durant les mesures.

En raison des dimensions suffisamment petites du cristal et de la longueur d'onde utilisée, aucune correction d'absorption n'a été nécessaire.

Les paramètres de maille obtenus à partir de données angulaires recueillies lors de la collecte d'intensité sont les suivantes: a = 10,454 (5), b = 10,675 (5), c =8,629 (4) Å; $\alpha = 101,14$ (2), $\beta = 109,85$ (2), $\gamma =$ 99,03 (2)°.

Ils sont à rapprocher de ceux donnés par de Wolff (ASTM 7-83): a = 10,60, b = 10,67, c = 8,65 Å; $\alpha = 100,10, \beta = 110,00, \gamma = 99,05^{\circ}$.

La maille, ayant un volume de 862,4 Å³, contient deux unités formulaires.

Tableau 1. Paramètres des positions atomiques (×10⁴), facteur de température B isotrope et paramètres d'agitation thermique anisotrope β_{ii} (×10⁵)

Les écarts standard sont donnés entre parenthèses.

	x	У	Z	B	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Zn(1)	0	0	0	1,30	306 (9)	377 (9)	445 (14)	-2(7)	132 (9)	57 (9)
Zn(2)	5000	5000	5000	1,34	354 (9)	243 (8)	606 (15)	24 (7)	126 (9)	61 (9)
Zn(3)	4960,3 (7)	473,6(6)	7674,4 (8)	1,34	371(7)	379 (6)	539 (10)	116 (5)	213 (7)	158 (7)
Na	230(3)	1316 (2)	4086 (3)	2,68	764 (30)	730 (27)	1031 (44)	110 (23)	449 (30)	226 (28)
P(1)	2888 (1)	637 (1)	9589 (2)	1,05	254 (13)	317(12)	409 (21)	72 (10)	157 (13)	91 (13)
P(2)	2835 (1)	2238(1)	2698 (2)	1,07	235 (13)	261 (12)	413 (21)	-5(10)	106 (13)	9 (12)
P(3)	5504 (1)	2062 (1)	5070(2)	1,11	315(14)	230 (12)	429 (21)	27 (10)	117 (14)	53 (12)
O(E11)	1324 (4)	256 (4)	8756 (5)	1,49	376 (41)	495 (40)	494 (61)	60 (32)	201 (40)	111 (39)
O(E12)	3571 (4)	1081 (4)	8443 (5)	1,54	457 (42)	436 (38)	711 (65)	162 (32)	401 (43)	180 (40)
O(E13)	6531 (4)	407 (4)	9635 (5)	1,81	533 (45)	438 (39)	581 (64)	133 (34)	66 (43)	157 (40)
O(L12)	3330(4)	1954 (4)	1140(4)	1,35	372 (40)	339 (35)	477 (59)	16 (30)	237 (39)	-18(36)
O(E21)	1382 (4)	1463 (4)	2190 (5)	1,42	286 (38)	415 (38)	491 (60)	-42 (30)	170 (39)	-27(37)
O(E22)	3129 (4)	3683 (4)	3363 (5)	1,52	341 (39)	328 (36)	672 (65)	58 (30)	109 (40)	-39(38)
O(L23)	3811 (4)	1625 (4)	4062 (5)	1,51	358 (40)	374 (37)	618 (63)	37 (31)	85 (40)	196 (39)
O(E31)	6055 (4)	1190 (4)	3977 (5)	2,02	508 (46)	427 (40)	930 (74)	50 (34)	352 (47)	-106(43)
O(E32)	5751 (4)	1773 (4)	6770 (5)	1,97	471 (44)	682 (45)	512 (63)	-34 (35)	71 (42)	332 (43)
O(E33)	6005 (4)	3491 (4)	5253 (5)	1,65	366 (41)	285 (36)	1004 (71)	61 (30)	168 (44)	170 (40)
O(W1)	9042 (4)	1468 (4)	8976 (5)	2,17	526 (46)	575 (44)	954 (75)	177 (36)	23 (48)	290 (46)
O(W2)	4417 (4)	4842 (4)	7136 (5)	2,31	676 (51)	662 (47)	830 (73)	101 (39)	376 (50)	233 (47)
O(W3)	2127 (5)	2725 (4)	6698 (6)	2,72	757 (54)	604 (47)	1168 (83)	134 (41)	305 (54)	311 (51)
O(W4)	9263 (7)	3148 (6)	3783 (9)	5,83	1858 (107)	1114 (76)	3057 (164)	702 (73)	993 (110)	908 (91)
O(W5)	8761 (5)	602 (5)	5070 (6)	2,68	621 (51)	893 (54)	924 (78)	206 (42)	299 (52)	302 (52)
O(<i>W</i> 6)	6880 (6)	4341 (6)	9195 (7)	4,72	1368 (82)	1124 (72)	1182 (97)	124 (61)	57 (72)	-39 (66)
O(W7)	6613 (6)	3112 (5)	1599 (8)	4,77	1549 (87)	754 (61)	2325 (132)	150 (58)	914 (89)	170 (71)
O(W8)	734 (6)	3634 (5)	8890 (7)	4,07	1044 (70)	709 (55)	2209 (124)	77 (50)	575 (76)	377 (67)
O(<i>W</i> 9)	9047 (6)	4791 (7)	6674 (8)	5,55	979 (73)	2180 (106)	2650 (146)	695 (73)	711 (85)	1292 (103)

Détermination de la structure

L'étude de la fonction de Patterson nous a permis de vérifier qu'il y avait une complète similitude entre l'arrangement atomique de ce composé et celui du tripolyphosphate: $Zn_2Ag_{0,62}H_{0,38}P_3O_{10}$. 9H₂O que nous avions déjà determiné (Averbuch-Pouchot & Guitel, 1976). Une série d'affinements réalisés à partir de ce modèle et faits au moyen du programme *SFLS*-5 de Prewitt (1966) conduit pour le facteur *R* à la valeur de 0,041 pour la totalité des réflexions mesurées.*

Les paramètres des positions atomiques, les facteurs thermiques isotropes, β , et les facteurs de température

* La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 32260: 21 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre. anisotropes sont consignés dans le Tableau 1 et les longueurs et directions des axes des ellipsoïdes de vibration thermique dans le Tableau 2.

Description de la structure

Les Figs. 1 et 2 représentent les projections de la structure sur le plan *ab* et le plan *ac*. Nous pouvons faire pour ce composé les mêmes remarques structurales que pour $Zn_2Ag_{0.62}H_{0.38}P_3O_{10}.9H_2O$. Il s'agit dans les deux cas d'édifices tridimensionnels, dont la cohésion est assurée par les cations.

Les cations possèdent deux types de coordination: coordination octaédrique pour Na, Zn(1) et Zn(2) et coordination tétraédrique pour Zn(3). Les distances interatomiques dans ces environnements sont données par le Tableau 3.

 Tableau 2. Longueurs des axes principaux des ellipsoïdes de vibration des atomes et orientation par rapport aux axes cristallographiques

	$U(\text{\AA})$					U(Å)			
	(×10 ³)	θ°/a	$ heta^{\circ}/b$	θ°/c		$(\times 10^{3})$	θ°/a	θ°/b	θ°/c
Zn(1)	153	119	21	100	O(L23)	164	133	58	48
	119	125	96	15		127	63	36	119
	112	48	70	79		122	55	106	55
Zn(2)	145	127	95	17	O(E31)	204	80	134	41
	134	42	127	74		146	30	72	102
	109	73	37	86		122	118	50	52
Zn(3)	143	78	39	78	O(E32)	215	127	36	71
	129	49	128	66		140	37	66	99
	119	136	97	27		107	91	115	21
Na	205	126	31	102	O(E33)	183	112	90	11
	188	66	62	67		132	26	113	86
	161	135	103	27		119	78	23	100
P(1)	129	95	5	100	O(W1)	183	106	56	46
	115	66	95	46		167	48	55	127
	100	25	93	134		147	47	125	67
P(2)	135	109	30	121	O(W2)	193	125	26	92
. ,	113	136	78	33	. ,	176	54	71	71
	096	52	64	80		144	125	106	19
P(3)	127	20	119	103	O(<i>W</i> 3)	202	136	66	42
	120	102	120	19	. ,	184	46	86	69
	106	74	45	76		168	85	24	124
O(E11)	166	108	9	98	O(W4)	314	78	75	45
	132	44	83	73		290	24	81	130
	117	129	95	19		201	111	17	107
O(E12)	164	61	78	59	O(W5)	216	94	16	89
	147	100	13	112		168	5	95	114
	101	148	84	39		166	86	105	24
O(E13)	177	22	87	131	O(W6)	286	23	83	130
	151	94	22	83	. ,	264	109	16	108
	123	68	112	42		174	78	75	46
O(L12)	160	116	37	120	O(W7)	289	58	113	52
	121	46	59	95		245	148	93	39
	102	125	73	30		198	90	23	85
O(E21)	173	111	25	114	O(W8)	264	102	91	14
	113	115	75	26		231	26	122	93
	105	33	71	98		182	68	32	104
O(E22)	171	106	128	28	O(W9)	351	93	38	68
	130	22	121	102		249	113	121	22
	115	76	53	66		192	23	110	88

Fig. 1. Projection de la structure sur le plan ab.

Fig. 2. Projection de la structure sur le plan ac.

Tableau 3. Distances interatomiques (Å) dans lesenvironnements du zinc et du sodium

L'anion tripolyphosphate rencontré ici est conforme à ceux décrits dans les travaux précédents. Le Tableau 4 rassemble les principales distances interatomiques et angles de liaison de cet anion.

On peut remarquer dans cet arrangement atomique la présence de quatre molécules d'eau non liées à des cations [O(W6), O(W7), O(W8), et O(W9)]. Les distances de ces molécules avec leurs plus proches voisins sont indiquées dans le Tableau 5.

Le dernier fait marquant de cette structure est l'existence de canaux reliés entre eux, délimités par les oxygènes des anions P_3O_{10} et qui contiennent les molécules d'eau.

Tableau 4. Distances interatomiques (Å) et principaux angles (°) de liaison dans l'anion P₃O₁₀

Les valeurs	soulignées	sont les	distances	P-C)
-------------	------------	----------	-----------	-----	---

P(1)	O(E11)	O(E12)	O(E13)	O(L12)
O(E11)	1,495 (4)	112,7 (2)	112,1 (2)	107,9 (2)
O(E12)	2,499 (6)	1,621 (4)	113,5 (2)	102,8 (2)
O(E13)	2,495 (6)	2,524 (6)	1,512(5)	107,1 (2)
O(<i>L</i> 12)	2,520 (4)	2,446 (6)	2,520(6)	1,621 (4)
P(2)	O(<i>E</i> 21)	O(E22)	O(L12)	O(L23)
O(<i>E</i> 21)	1,482(4)	117,7 (2)	110,0 (2)	106,1 (2)
O(E22)	2,536 (5)	1,480(4)	107,7 (2)	110,7 (2)
O(L12)	2,519 (6)	2,482(6)	1,591 (5)	103,6 (2)
O(L23)	2,461 (5)	2,531 (6)	2,504 (6)	1,596 (4)
P(3)	O(E31)	O(E32)	O(E33)	O(L23)
O(E31)	1,512(5)	112,9 (2)	113,1 (2)	104,6 (2)
O(E32)	2,510(7)	1,501 (5)	111,9 (2)	104,7 (2)
O(E33)	2,507 (6)	2,482 (6)	1,493 (4)	109,1 (2)
O(<i>L</i> 23)	2,483 (6)	2,477 (5)	2,542 (5)	1,626 (4)
P(1)-P(2) P(2)-P(3)	2,911 (2) 2,906 (2)	P(P((1)-O(L12)-P(2) 2)-O(L23)-P(3)	130,0 (3) 128,9 (3)

Tableau 5. Distances (Å) des molécules d'eau non liées aux cations à leurs plus proches voisins

$2 \times Zn(1) - O(E11)$ $2 \times Zn(1) - O(E21)$ $2 \times Zn(1) - O(W1)$ $2 \times Zn(2) - O(E22)$	2,036 (5) 2,096 (3) 2,160 (5)	Zn(3)-O(E12) Zn(3)-O(E13) Zn(3)-O(E31) Zn(3)-O(E32)	1,937 (5) 1,939 (4) 1,927 (3) 1,927 (5)	O(<i>W</i> 6)–O(<i>E</i> 32) O(<i>W</i> 6)–O(<i>W</i> 2) O(<i>W</i> 6)–O(<i>W</i> 7) O(<i>W</i> 6)–O(<i>W</i> 8)	2,894 (6) 2,786 (7) 2,726 (10) 2,785 (7)	O(W7)–O(W2) O(W7)–O(W4) O(W7)–O(W6)	2,781 (8) 2,760 (9) 2,726 (10)
$2 \times Zn(2) - O(E33)$ $2 \times Zn(2) - O(W2)$	2,063 (4) 2,156 (5)			O(W8)–O(W1) O(W8)–O(W3)	2,711 (7) 2,871 (9)	O(<i>W</i> 9)–O(<i>E</i> 22) O(<i>W</i> 9)–O(<i>E</i> 33)	2,994 (8) 2,975 (7)
Na–O(E11) Na–O(E21)	2,513(4) 2,352(5)	Na–O(W4) Na–O(W5)	2,357 (8) 2,365 (6)	O(<i>W</i> 8)–O(<i>W</i> 6) O(<i>W</i> 8)–O(<i>W</i> 9)	2,785 (7) 2,756 (9)	O(<i>W</i> 9)–O(<i>W</i> 4) O(<i>W</i> 9)–O(<i>W</i> 8)	2,857 (10) 2,756 (9)
Na-O(<i>W</i> 3)	2,448 (4)	Na-O(W6)	2,482 (6)			O(W3) - O(W4)	2,775 (10)

Références

AVERBUCH-POUCHOT, M. T. & GUITEL, J. C. (1976). Acta Cryst. B32, 2270–2274.
BONNEMAN-BÉMIA, P. (1941). Chim. Anal. 16, 395–476.
CORBRIDGE, D. E. C. & TROMANS, F. R. (1958). Anal. Chem. 30, 1101–1110. HUBER, H. (1937). Angew. Chem. 50, 323-330.

PREWITT, C. T. (1966). SFLS-5. A Fortran IV full-matrix crystallographic least-squares program.

QUIMBY, O. T. & MCCUNE, M. W. (1957). Anal. Chem. 29, 248-253.

SCHWARZ, F. (1895). Anorg. Chem. 9, 249–266. STANGE, M. (1896). Anorg. Chem. 12, 444–463.

Acta Cryst. (1977). B33, 1431–1435

Existence d'un Nouvel Anion Condensé: Cr₂PO₁₀. Structures Cristallines de Deux Phosphochromates de Baryum: BaHCr₂PO₁₀. H₂O et BaHCr₂PO₁₀. 3H₂O

PAR M. T. AVERBUCH-POUCHOT, A. DURIF ET J. C. GUITEL

Laboratoire de Cristallographie, CNRS, 166 X, Centre de Tri, 38042 Grenoble Cédex, France

(Reçu le 5 octobre 1976, accepté le 15 octobre 1976)

BaHCr₂PO₁₀. H₂O and BaHCr₂PO₁₀. 3H₂O are both triclinic; space group $P\bar{1}$, Z = 2. Unit-cell dimensions are, for the monohydrate: a = 9.333 (5), b = 7.779 (5), c = 7.526 (5) Å; $\alpha = 106.28$ (3), $\beta = 105.37$ (3), $\gamma = 94.14$ (3)°; for the trihydrate: a = 10.189 (5), b = 8.207 (5), c = 7.749 (5) Å; $\alpha = 108.80$ (3), $\beta = 107.14$ (3), $\gamma = 89.04$ (3)°. The crystal structures of these two salts have been solved from 1643 independent reflexions for the first salt (R = 0.041) and 2340 independent reflexions for the second (R = 0.059). The atomic arrangements of these two salts show the existence of a new type of condensed anion: Cr₂PO₁₀.

Introduction

Ce travail s'insère dans le cadre d'une recherche sur les anions condensés mixtes contenant du phosphore, commencée par l'étude du phosphobéryllate d'ammonium, $NH_4Be_2P_3O_{10}$ (Averbuch-Pouchot, Durif, Coing-Boyat & Guitel, 1977). Les deux sels faisant l'objet de la présente étude sont les premiers exemples de composés à tripolyanions mixtes: Cr_2PO_{10} .

Préparation chimique

Les deux composés ont été préparés à partir d'une solution d'anhydride chromique dans l'acide monophosphorique. L'introduction de carbonate de baryum dans cette liqueur provoque au bout de quelques jours une première précipitation de cristaux orangés de BaHCr₂PO₁₀.H₂O. La solution filtrée est de nouveau abandonnée pendant plusieurs jours, au bout desquels apparaissent des cristaux, également orangés, du composé trihydraté: BaHCr₂PO₁₀.3H₂O.

Caractéristiques cristallines

Les deux composés cristallisent dans le système triclinique. Leurs paramètres de maille, obtenus à partir de données enregistrées au diffractomètre automatique, sont respectivement pour BaHCr₂PO₁₀.H₂O: a =9,333, b = 7,779, c = 7,526 Å; $\alpha =$ 106,28, $\beta =$ 105,37, $\gamma =$ 94,14°; V = 496,2 Å³; et pour BaHCr₂-PO₁₀.3H₂O: a = 10,189, b = 8,207, c = 7,749 Å; $\alpha =$ 108,80, $\beta =$ 107,14, $\gamma =$ 89,04°; V = 584,0 Å³.

Les deux mailles contiennent deux unités formulaires.

Techniques expérimentales

Les différentes conditions expérimentales utilisées sont rassemblées Tableau 1. En raison des dimensions suffisamment petites des deux cristaux et de la longueur d'onde utilisée, aucune correction d'absorption n'a été faite.

Tableau 1. Conditions expérimentales

	BaHCr ₂ PO ₁₀ . H ₂ O	BaHCr ₂ PO ₁₀ .3H ₂ O
Longueur d'onde	Ag (<i>K</i> α)	Ag (<i>K</i> α)
Vitesse de balayage (°s ⁻¹)	0,04	0,03
Domaine de balayage (°)	1,60	1,20
Mode de balayage	θ/ω	ω
Durée totale de balayage	10	20

du fond continu (s)		
Domaine de mesure (°)	3-20	3-25
Dimension du cristal (mm)	$0,16 \times 0,16 \times 0,16$	$0,11 \times 0,08 \times 0,13$
Nombre de mesures	1643	2390